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Abstract −−−− An effective MoM solution scheme is developed for 
large arrays using a modification of the AIM  (Adaptive 
Integral Method) method. The method permits the analysis of 
arrays with arbitrary contours and nonplanar elements. Both 
fill and solve times within the MoM method are improved 
with respect to more standard MoM solvers.  
 

1 INTRODUCTION 

This paper focuses on a numerical procedure that 
addresses the difficulties of dealing with large, finite 
arrays while preserving the generality and robustness 
of full-wave methods. We present a fast method 
based on approximating interactions between 
sufficiently separated array elements via a relatively 
coarse interpolation of the Green�s function on a 
uniform grid commensurate with the array�s 
periodicity.  The interaction between the basis and 
testing functions is reduced to a three-stage process. 
The first stage is a projection of standard (e.g., 
RWG) subdomain bases onto a set of interpolation 
functions that interpolate the Green�s function on the 
array face. This projection, which is used in a 
matrix/vector product for each array cell in an 
iterative solution process, need only be carried out 
once for a single cell and results in a low-rank matrix. 
An intermediate stage matrix/vector product 
computation involving the uniformly sampled 
Green�s function is of convolutional form in the 
lateral (transverse) directions so that a 2D FFT may 
be used. The final stage is a third matrix/vector 
product computation involving a matrix resulting 
from projecting testing functions onto the Green�s 
function interpolation functions; the low-rank matrix 
is either identical to (using Galerkin�s method) or 
similar to that for the bases projection. 
 
The general scheme is that of the adaptive integral 
method (AIM) developed in [1], with a significant 
difference being the approximation of the Green�s 
function using Lagrange interpolating polynomials. 
The MoM scheme presented is suitable for 
incorporating the solver acceleration method 
presented recently in [2] that uses a physically-based 
preconditioner to accelerate the iterative solution 
process. 
 

 

 

 

2 THE FAIM METHOD 

The FAIM (faster AIM) method discussed below is 
applicable to arrays with arbitrary boundaries. The 
array boundary is defined by the vertices of a closed, 
piecewise linear curve, which in turn defines an array 
mask that indicates where array elements are present. 
The mask is generated using a winding number test to 
determine if an element is within the array boundary or 
not. Typical array boundaries are represented in Fig. 1. 
Use of the mask also simplifies the specification of 
missing elements when their effects are to be 
investigated. The displacement between the p'th and 
pth array cells is 1 1 1 2 2 2( ) ( )p p p p′ ′− + −s s , where s1 and 
s2 are two arbitrary lattice vectors lying in the xy plane. 
Bold letters denote vectors or double indexes, and unit 
vectors are denoted by a caret. The vector �r ρ zz= + , 
with � �x y= +ρ x y , is in cell 1 2( , )p p=p  and 

�z′ ′ ′= +r ρ z  is in cell 1 2( , )p p′ ′ ′=p . The array elements 
within cells p and p´ are discretized, for instance, using 
standard RWG basis functions, with primed and 
unprimed indices denoting source and testing 
functions, respectively (Fig. 2).  

 
2.1 Array and Matrix Masks and the FFT 

Domain 
 
The array mask indicates the presence or absence of an 
array element at each cell location within an arbitrary 
contour. From it, a matrix mask is synthesized that 
indicates permissible interactions between the elements 
present in the array. The matrix mask for a hexagonal 
array, for example, is shown in Fig. 3; the matrix 
tabulates all possible interactions between elements in 
the array mask in terms of their separation indices from 
a central array element. Not only does the matrix mask  

Array Masks 

x
y

Figure 1: The array mask describes the location of 
array elements within a rectangular bounding box. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
determine what values of the Green�s function are 
needed for interpolation, but also facilitates the storage 
of block-Toeplitz matrices of rank N N× , with 
N denoting the total number of degrees of freedom per  
array element. Also shown in the figure is the FFT 
domain obtained by finding the bounding box of the 
matrix mask and padding the number of cells to the 
next power of two in each lattice dimension.  

2.2 EFIE Formulation 

Though a mixed potential representation is actually 
used, the EFIE integral equation for the array is written 
symbolically in the compact form  
 

inc
tan( , , ) ( ) ,J r E

S

z z dS′ ′ ′ ′− ⋅ = −∫G ρ ρρ ρρ ρρ ρ               (1) 

where the integration domain S represents all 
conducting elements over the entire finite array.  This 
integral equation has the discretized form  
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where n

′pΛΛΛΛ  and m
pΛΛΛΛ  are RWG basis and testing 

functions, respectively. In supermatrix form, the 
discretized EFIE may be written symbolically as  
 

,mn n mZ V′ ′     Ι =     
pp p p                      (2) 

with  
 

( ); ( , , ); ( )mn m nZ z z′ ′′ ′ ′= − < − >pp p pr rΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛΛ ρ ρ ΛG . 

2.2 Green�s Function Interpolation (FAIM Filling 
Acceleration)  

For elements separated by at least one cell, we 
approximate the Green�s function ( , , )z z′ ′−G ρ ρρ ρρ ρρ ρ  via 
Lagrange polynomial interpolation in a separable form 
as 

, , '

, , ,

( , , )

( ) ( ) ( ) ( ) ,j j j j

j j

z z

L L z L L z′ ′ ′

′ ′

′ ′− ≅

′ ′∑ i i-i i

i i

G

G

ρ ρρ ρρ ρρ ρ

ρ ρρ ρρ ρρ ρ   (3) 

where the indices on , ,j j′ ′i-iG  denote sampled values of 
the coordinates and  
 

( ) ( ) ( ) ( )
, , ( , , )j j
j j z z′ ′

′ ′ ′ ′≡ −i i
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and ( ) ( )jL L zi ρ  are Lagrange interpolation polynomials 
defined on the interpolation points within a cell (see 
Fig. 4). It is significant that in the evaluation of the 
interaction mnZ ′pp  between two array cells p  and ′p , the 
interpolation scheme generally requires many fewer 
Green�s function evaluations per cell than in the usual 
case where subdomain interactions are evaluated 
directly, or even than the usual AIM approach requires. 
This becomes especially true as the complexity of the 
array elements increases. Furthermore, in the case of 
layered media, the Green�s function itself is evaluated 
by interpolating constituent terms that are tabulated 
along a single radial line. 

2.4 FAIM Formulation 
In the FAIM formulation, the m and n elements in the 
matrix block pp

mnZ ′  corresponding to array cell p  and 
source cell p′  may be represented as  
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Figure 2: Array cell index definitions and arbitrary 
skew lattice vectors. 
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Figure 3: Matrix mask for a hexagonal array 
obtained by translating the array mask, and the FFT 
domain for a rectangular array lattice obtained by 
padding to the next power of 2 the number of array 
cells (blocks) of the matrix mask in both x and y 
directions. 



and the corresponding matrix equation would be 
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Two important facts that significantly speed the 
computation are the following: 
 

1) 
1 2 3
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 where Floor ( )x x≡    is the 

greatest integer less than or equal to its argument. 
The same holds for 

1 2 3r r r N
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p
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2)   
1 2 3

'
r r r N

njL L
× × ×

′
′

p
i , ΛΛΛΛ  and 

1 2 3r r r N
mjL L

× × ×

p
i ,,,, ΛΛΛΛ  are 

identical for every array element p′ or p, so they 
need only be computed once. Furthermore, if 
Galerkin�s method is used ( m n

′p pΛ ΛΛ ΛΛ ΛΛ Λ==== ), then the 
quantities are equal. 

2.4 FAIM Solution Acceleration. Fast Computation 
of Matrix-Vector Products 

The form (6) of the EFIE is not sufficiently accurate 
if the cell (index) separation is not sufficiently large 

since a low order interpolation of the Green�s 
function is not accurate near the source point. To 
avoid this inaccuracy while minimizing the number of 
interpolating polynomials within each cell, the self 
block coupling and that between neighboring blocks 
is found by standard MoM, i.e., using standard 
integration rules and Green�s function evaluation for 
the interaction between each RWG basis and test 
function. The original discretized EFIE is thus 
rewritten as  
 

,mn n m n n mZ Z V′ ′ ′ ′        ∆ Ι + Ι =        
pp p pp p p!        (7) 

 
where the block Toeplitz difference matrix 

pp pp pp
mn mn mnZ Z Z′ ′ ′∆ = − !  is taken as zero for elements 

satisfying p p c′− ≥  and is hence sparse. We also 
note that generally , , 'j j′ = ∞i-iG  when , j j′ ′= =i i , but 

this infinite value can be replaced by a finite value and 
(6) remains valid. To evaluate the matrix/vector 
product, we note that the product pp p

mn nZ ′ ′   ∆ Ι     can be 

performed quickly since pp
mnZ ′∆  is sparse, whereas 

pp p
mn nZ ′ ′   Ι  
!  is of convolutional form and can be 

evaluated quickly using a 2D FFT as follows:  
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-1MASK FFT

FFT FFT

  (8) 

 
where the double bars on a quantity indicate that its 
length is extended so as to obtain a circular 
convolutional form and then zero-padded to obtain 
vectors of  length 2k  for  applying the fast Fourier 
transform (FFT ), -1FFT  denotes the inverse fast 
Fourier transform, and iMASK  is the array mask 
restricting the result to array elements within the array 
boundary. 

3 NUMERICAL RESULTS 

To assess the interpolation accuracy, the method is 
tested on an array of 5x5 dipoles in free space, each 
discretized using 24 triangles and RWG basis 
functions. The dipoles are illuminated by a plane 
wave with E field along the dipole axis and at a 
frequency f = 380MHz. The dipoles have length 
l = 0.494λ and width w = 0.025λ. The average 
percent error in the current at the center of each 
dipole of the array is plotted versus the Lagrange 
polynomial interpolation order in Fig. 5. The error at 
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n th basis 
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Figure 4: The periodic grid on which the Green�s
function is evaluated and sampled is shown
superimposed on the array cells. Within an array
cell, the Green�s function is evaluated at 1 2 3r r r× ×
points. 



each element is calculated relative to a reference 
solution using an element-by element MoM scheme, 
and then averaged over all the elements. The 
computation time per iteration taken by the BiCGstab 
iterative method increases with interpolation order 
since more terms are involved in each FFT matrix-
vector multiplication.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FAIM method has been tested on a 20×20 array 
of printed dipoles on a grounded dielectric substrate. 
The geometrical configuration is that of [3], where it 
was shown that the infinite array has a scan blindness 
near 45 degrees. However, we note in Fig. 6 that 
while the reflection coefficient of the center element 
in the finite array is nearly the same as that of the 
infinite array, the average reflection coefficient of the 
finite array is somewhat lower near the scan 
blindness angle due to edge effects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The finite array was also treated using an �exact� 
MoM calculation utilizing an accelerated but exact 
fill. The average error in currents between the FAIM 
and MoM calculation was less than a 0.1%, while the 
FAIM calculation ran about 7 times faster. 
 

4 CONCLUSIONS 

The FAIM method is developed for arrays with 
arbitrary geometries and is summarized by the 
following steps. An array mask function is used to 
determine the arbitrary array contour and to specify 
the domain for which the Green�s function is 
interpolated using Lagrange polynomials to 
accelerate the matrix fill; an FFT is then used to 
accelerate the matrix-vector products in an iterative 
solver. Preliminary results show the effectiveness of 
the method for large array problems.  
 
The name FAIM (faster AIM) arises from the fact 
that the method is similar to the AIM method, but 
with the difference that Lagrange interpolating 
polynomials are used to approximate the Green�s 
function using relatively fewer interpolation points 
per cell. Further, the bases are projected onto the 
interpolation polynomials in contrast to determining 
their multipole moments relative to the interpolation 
grid. Preliminary numerical simulations suggest that 
fewer integration points are required to keep the same 
accuracy compared to the original AIM method. 
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